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ABSTRACT: Predicting the three-dimensional structure of a protein given only its amino acid sequence is
a long-standing goal in computational chemistry. In the thermodynamic approach, one needs a potential
function of conformation that resembles the free energy of the real protein to the extent that the global
minimum of the potential is attained by the native conformation and no other. In practice, this has never
been achieved with certainty because even with greatly simplified representations of the polypeptide chain,
there are an astronomical number of local minima to examine. If one chooses instead a protein representation
with only a large but manageable number of discrete conformations, then the global preference of the potential
for the native can be directly verified. Representing a protein as a walk on a two-dimensional square lattice
makes it easy to see that simple functions of the interresidue contacts are sufficient to globally favor a given
“native” conformation, as long as it is a compact, globular structure. Explicit representation of the solvent
is not required. Another more realistic way to confine the conformational search to a finite set is to draw
alternative conformations from fragments of larger proteins having known crystal structure. Then it is possible
to construct a simple function of interresidue contacts in three dimensions such that only 8 proteins are
required to determine the adjustable parameters, and the native conformations of 37 other proteins are
correctly preferred over all alternative conformations. The deduced function favors short-range back-
bone—-backbone contacts regardless of residue type and long-range hydrophobic associations. Interactions

over long distances, such as electrostatics, are not required.

Many globular proteins at equilibrium are at the global
minimum of free energy over the kinetically accessible region
of conformation space. (Anfinsen, 1973; Go, 1983) In the
thermodynamic approach to predicting protein folding from
amino acid sequence, one attempts to simulate this by choosing
some kind of potential function of conformation and then
searching for the conformation(s) having the global minimal
value of this function. There are two interrelated issues that
need to be solved in order to ensure the calculations are feasible
and to get correct answers: how should conformations be
represented, and how should the function be constructed? The
standard approach to computational conformational analysis,
molecular mechanics, represents each atom in the molecule
as a point in three-dimensional Cartesian space, so that atoms
can move in a continuous fashion by smoothly changing their
x, y, and z coordinates. Sometimes the atomic Cartesian
coordinates are calculated from specified internal coordinates,
such as bond lengths, bond angles, and dihedral angles, but
in any case, conformational movements are smooth and con-
tinuous. Potential functions of conformation are generally
chosen as long sums of two-, three-, and four-atom interactions,
where each term is some reasonable continuous function of
atomic coordinates. The adjustable parameters within these
terms are subsequently varied so as to reproduce some selection
of experimentally observed conformations, crystal structures,
known bond rotation barriers, enthalpies of sublimation, vi-
brational frequencies, etc. The intent is that the function
should simulate the enthalpy of a molecule at room temper-
ature (or sometimes at 0 K), and entropic effects, such as
solvation and conformational variability at room temperature,
must be simulated by lengthy molecular dynamics calculations
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using this same function. Even verification of the function
with respect to energetically determined phenomena is typically
limited. In particular, agreement with experimentally observed
conformations means that the function should have a sub-
stantial local minimum relatively close (<0.1 A) to the ex-
perimental value. Apparently any reasonable potential having
interatomic attractions but also repulsions (simulating van der
Waals overlaps, covalent bond compression, and so on) must
have a number of local minima that increases rapidly with the
number of atoms. Thus, molecular mechanics potential
functions are generally tuned to agree well with the experi-
mentally observed conformations of a selection of molecules
in the vicinity of those conformations, but in a more global
sense, there may be other much deeper local minima corre-
sponding to very different conformations. I am especially
concerned that standard functions do not necessarily favor the
crystal structure of a protein over an alternative folding
(Bryant & Amzel 1987; Novotny et al., 1988). My co-workers
and I have devised potential functions having better global
properties (Crippen & Snow, 1990; Seetharamulu & Crippen,
1991) in the sense that the functions are intended to simulate
the free energy of solvated polypeptides and that the global
minimum should be near the crystal structure for a selection
of small proteins. This is a qualitatively different parame-
ter-adjustment task, made extremely difficult because the
number of local minima apparently increases exponentially
with the size of the molecule (Crippen, 1975). Since the
molecule is represented in terms of interacting particles pos-
itioned by smoothly varying Cartesian coordinates and the
potential is a continuous function of these coordinates, even
finding a local minimum requires converging on it with a
nonlinear minimization algorithm, much less verifying that
the near-native minimum is indeed the very lowest of all local
minima.

One way of making the problem more tractable is to convert
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from a continuous conformation space to a finite discrete one,
mathematically speaking. Instead of allowing atomic coor-
dinates to vary continuously so that important conformations
correspond to local minima of the potential over the continuous
space of all conformations, it would be much more convenient
if there was just a (possibly long but) finite list of allowed
conformations a protein could take on. Then, if one of these
is designated to be the native conformation, the potential is
merely required to have a lower value for it than for any other
conformation in the list. Verification of the requirement
amounts to simply evaluating the function for each confor-
mation in the finite discrete conformation space. There are
two plausible ways to construct such a discrete space. The
traditional way in theoretical polymer chemistry is to model
a protein as a walk on some sort of lattice, so that for short
chains all conformations can be examined, subject to the
constraints of certain allowed interresidue bond lengths and
bond angles. The second way is to use pieces of the known
protein crystal structures as examples of how polypeptides can
fold. The advantage is that the conformations are obviously
much more realistic, but since there are only so many protein
crystal structures, not all possible conformations would be
explored. In this paper, I will use the lattice approach to
establish some important general conclusions about potential
functions and the uniqueness of the native conformation. Then
I will turn to the second approach to use these conclusions for
producing a potential that has considerable global predictive
power.

Others have been using both kinds of discrete conformation
spaces for some time, particularly the lattice idea. However,
it is important to note the sometimes subtle differences between
related studies and this one. For instance, Covell and Jernigan
(1990) looked at all conformations available to a few proteins
corresponding to Hamilton walks on certain lattices and
showed that a function of interresidue contacts previously
derived from a survey of protein crystal structures could rank
the native conformation among the best 2%. Lau and Dill
(1989) found that only certain kinds of amino acid sequences
can produce a unique global minimum of a particular ex-
tremely simple contact potential for two-dimensional
square-lattice walks. Sippl (1990) constructed a continuous
function of continuously variable interresidue distances by
surveying the kinds of conformations seen in the protein crystal
data for short segments. Here we treat a related but funda-
mentally different question: Given the finite set of all possible
conformations and given one of these as the “native” structure,
can one devise a potential function that clearly favors the native
over all the rest? If so, does this function have any predictive
power? What restrictions are there on the types of such
functions and the kinds of conformations that can be globally
favored? The next section explains how I first examined
two-dimensional square-lattice models of proteins, because it
is easy to explore all conformations and because the functional
forms available for potentials are rather limited. Then the
following section shows how to generalize the lattice results
to a much more realistic representation of proteins in terms
of three-dimensional atomic coordinates taken from protein
X-ray crystal structures.

SQUARE-LATTICE MODEL

Represent a protein having n residues as a self-avoiding walk
of n— 1 steps on a very large two-dimensional square lattice.
Let the lattice spacing be unity. Sequentially adjacent residues
are distance | apart. Each occupied lattice point has a se-
quence number | </ < nandatype | <t < 20, corresponding
to the 20 kinds of naturally occurring amino acids.
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FIGURE 1: Some alternative conformations of a 16-residue walk on
a square lattice. The arbitrarily chosen “native” conformation (a),
showing the arbitrarily chosen sequence of residue types. The last
residue in the sequence has type 19. Alternative rigid conformations
are shown in b and c. Conformation d is not rigid, as indicated by
the two alternative placements of its last residue. Conformation ¢
is the lattice analogue of a helix.

Define a contact to be when adjacent lattice points are
occupied by two residues that are not sequentially adjacent:
d;<d,=1and|i-j]> 1. Since the walks are self-avoiding,
a contact between residues i and j implies |i - j] 2 3.

Two conformations, ¢ and ¢/, of the same protein are defined
as different if corresponding residues cannot be superimposed
by translation, rotation, and mirror inversion. Here,
“corresponding” means that the two residues have the same
sequence number.

Let S, be the set of contacts occurring in conformation .
Identify the contacts by sequence separation, type of residue
with lower sequence number, and type of residue with higher
sequence number. Since the same residue type may occur
more than once in the protein, the list of contacts may have
more than one entry with the same description. We want a
potential function (mimicking the free energy of a real protein
as a function of conformation) that depends only on the
contacts: E(c) = E(S,). This assumes that only two-body
interactions are important. In particular, assume the effects
of contacts are simply additive:

E(c) = X flk) (1)
kES;

where fmay take into account the types of residues involved,
their sequence separation, and even which residue is higher
in sequence number.

For n residues on an m X m lattice where m > n, there may
be n,, adjacent occupied pairs of points (residue-residue
contacts plus n — 1 sequentially adjacent residue pairs), n,,
residue—solvent contacts, and n,, solvent—solvent contacts.
Then

n,=n-1+x
My =2n+2-2x (2)
nG=2m-1)m-3n-1+x

where always x = 0, x = 0 for a fully extended conformation,
and x > 0 for globular conformations. Because all three types
of contacts can be expressed in terms of a single parameter,
it is sufficient to take into account the residue—residue contacts
for defining E, even though solvation of real proteins is an
important factor in their free energy.

We define a conformation ¢ to be rigid if there is no ¢’ #
c such that S, = S.. For d, = 1, that implies that rigid
conformations tend to be rather compact. In Figure 1, con-
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Table I: Contact Potential Function That Favors Figure la?

separation class ey
3 fall} (0)
4-co 1 ={1-18, 20} -2 - )
2=1{19} -1 0

2Classification of contacts is by sequence separation and by subsets
of numeric residue type; the third column gives the matrix of empiri-
cally determined interaction parameters for contacts between residues
of the various classes.

formations a, b, c, and e are all rigid, but conformation d is
not, because there are two ways to place its last residue and
the list of contacts would be exactly the same for both. One
way distinguish the two alternatives for conformation d would
be that in one conformation, one solvent “molecule” could be
in contact simultaneously with residue sequence numbers 15
and 16, while in the other conformation, another solvent
molecule would be in contact with 6 and 16. However, we have
assumed that the potential function depends only on a sum
of two-body contacts. Another way to distinguish the two
alternatives would be to raise d, > v/2. Similarly for d, =
1, the lattice helix analogue e is rigid, but an extended chain
is not. Raising the cutoff to v/2 < d, < 2 allows the extended
chain to be rigid. Since in real polypeptides, a long isolated
a-helix can be stable while a single extended strand is not, we
keep the cutoff 4. = 1. If we want the native conformation
Cnat t0 be the unique global minimum of E, i.e., E(cy,) < E(c)
for all ¢ # c,,, then the native must be a rigid conformation.

For a 16-residue chain on a square lattice, there are 802075
distinct conformations, not counting translations, rotations,
and mirror inversions. Is it possible to build a potential E of
the form in eq 1 such that the arbitrarily selected “native”
conformation (Figure 1a) with its arbitrarily chosen amino
acid sequence can be the unique global minimum of E? To
eliminate any ambiguities about uniqueness, let fin eq 1 be
an integer-valued function of the contacts. More specifically,
[ first groups contacts into a number of ranges of sequence
separations, where the first range includes separations of 3 and
perhaps more, and the last range covers all separations greater
than the upper limit of the previous range. Then for each
range, residue types are grouped into a number of mutually
exclusive and comprehensive classes. Finally, each range has
a table of integers e, so that f{k) = e, where the contact k
involved a residue of type class / in contact with a sequentially
higher residue of type class j. The simple-minded way to
determine f is to carry out a branch-and-bound depth-first
search over the number of ranges, the minimal sequence
separation of each range, the number of classes in each range,
the assignment of residue types to the classes in each range,
whether the interaction table should be symmetric, and finally
what integer values should be put into the tables, starting with
small absolute values. There are two checks along the way
that keep the combinatorial explosion manageable. The first
is that a given choice of ranges and their sequence separations
may be eliminated if it fails to distinguish between the native
and some alternative set of contacts even when residue types
are fully separated into 20 classes in each range. The second
check is that the chosen distribution of residues into classes
in each range must distinguish between the native and each
alternative. For example, exactly the same nine contacts occur
in Figure | (conformations a and b) if there is only one range,
i.e., the potential does not depend on sequence separations. The
first solution found by the branch-and-bound search happens
to be Table I, which might be paraphrased as “don’t count
hairpin turn contacts, but otherwise make as many contacts
as possible, although contacts involving residue type 19 are
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not as favorable as others”. Although this potential function
is sufficient to make conformation a the global minimum over
all 802074 alternatives, it can be viewed as having been de-
termined by looking at only three of them! Alternative 1 is
Jjust conformation a with the sequence reversed; 2 is confor-
mation b; and 3 is conformation ¢. Then in the search, 1 and
2 are active in setting up the classification of ranges and residue
type classes, and 1 and 3 are active in determining the in-
teraction tables. Of course the potential can be viewed as being
determined by other sets of alternatives (just as there are many
choices of basis in linear programming), but the important
thing is that at least one set of critical alternatives is so small,

Outside of the rigidity of conformer a, there is nothing very
special about it, and I have been able to produce potential
functions that uniquely favor various other conformations with
other sequences, or indeed, that simultaneously favor the re-
spective native conformation of more than one “protein”. The
helical conformation e, for example, is uniquely favored by

separation 3, class 1 = {all}, e = (-1)
separation 4-o, class 1 = {all}, e = (0) 3)

There is a simple procedure to automatically generate a
small set of conformations that includes those critical for
determining the potential function. Let every residue in the
given protein be a node in a graph, and connect two nodes
whenever they correspond to sequentially adjacent (i.e.,
bonded) residues or to residues in contact. Now any Hamilton
walk on this graph corresponds to a reassignment of residue
sequence numbers and hence residue types to the nodes, and
all edges not traversed in the walk are contacts. Because
contacts are distinguished only on the basis of sequence sep-
aration and the two residue types, two different walks may
produce the same set of contacts. Thus, conformation a gives
rise to 552 different walks on a 4 X 4 lattice, of which there
are only 69 different sets of contacts, and these drive the
combinatorial search to the same potential function as before.
If conformation e is viewed as a homopolymer, there are 116
walks, yielding only 16 distinct sets of contacts, resulting in
the same potential as before.

PROTEIN CRYSTAL STRUCTURES

Of course, the goal is to construct a potential function that
can be used to predict the conformations of real proteins
composed of atoms having three-dimensional, continuous,
Cartesian atomic coordinates. The foregoing model studies
suggest that some kind of residue-residue contact function
would be adequate, even if solvent is not explicitly represented
and the contact terms operated over only short distances. The
key problems then are to define interresidue contacts for real
protein structures and to contrast the native conformation with
a large but manageable finite set of very plausible alternative
conformations.

Consider a set of 57 high-resolution (<2.5 A) small to
moderate sized (<250 residues) protein crystal structures
selected from the Brookhaven Protein Data Bank (Bernstein
et al., 1977) to avoid obvious duplication, large ligands, and
substantial unresolved regions: Imlt, 1ppt, lcrn, 3rxn, 1fdx,
2ovo, 4pti, 2mt2, 2ebx, 1sn3, 2abx, 2icb, 2pka, 351¢, lccs,
lhip, 2bSc, 2gn5, 3fxc, 2pcy, 4eyt, 2fd1, 2cdv, 1rei, 3cpv, lccr,
3c2c, 1hmgq, 2rhe, 1cy3, 155¢, 1pp2, 1bp2 1rn3, 2ccy, laza,
11z1, lecd, 4fxn, 2mhb, 2hhb, 2sns, 1fxl, 21hb, 2sod, 11hl,
3mbn, 4dfr, 11zm, 3wga, lgcr, 2stv, 3fab, 1ppd, 2act, 2¢na,
and 1tim (listed in order of increasing number of residues).
Of each data set, only the first polypeptide chain was used,
and it was read only up to the point of the first break in the
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chain. In the case of 2pka, that meant only the first 77 residues
were included, because there follows an uninterpretable portion
of the electron-density map. Since that part of the chain
comprises only some of a domain, 2pka was used for generating
alternative conformations of small proteins, but when it comes
to prediction, it is inappropriate to demand that a potential
function should fold these residues correctly in the absence
of the rest of the domain.

In order to devise a contact potential function to favor these
crystal structures over all alternative conformations, we must
define a contact for three-dimensional Cartesian coordinates
of atoms. Consider only the backbone N and O atoms and
side-chain CP atom of each residue as forming contacts; con-
struct the approximate position of an artificial C? for each Gly
residue. A backbone-backbone carbonyl-to-amide contact
must have the O-N distance <3.2 A and the C-N distance
>3.9 A. A backbone-side-chain contact is counted if the
distance between N or O and the C# is less than 5.0 A; for
side-chain-side-chain contacts, the cutoff is 9.0 A. In addition,
for side-chain—side-chain or backbone-side-chain contacts,
there must be no other atom between the interacting pair closer
than 1.4 A to the line segment joining them. The idea is that
much the same side-chain contacts could be made after point
mutations by permitting small shifts in the conformation.

Using the above definition of a contact, one can convert a
set of atomic coordinates into a list of contacts, where we
enumerate only three items per contact: the sequence sepa-
ration of the atoms in contact, and the types of the two amino
acid residues involved. Only sequence separations of three or
more are counted, and if a backbone atom is involved, its
residue type is noted as Gly. The contact definition and
enumeration scheme are crucial to the success of what follows.
Looser definitions of what constitutes a contact fail to dis-
criminate between the native and alternative conformations.

Instead of the use of walks on a lattice to generate a finite
set of alternative conformations, the 57 crystal structures
themselves can be used. For example, crambin (1crn) has 46
residues, while rubredoxin (3rxn) has 52. Use of the amino
acid sequence of 1crn applied to the coordinates of 3rxn res-
idues 1-46, 247, ..., 7-52 produces seven plausible alternative
conformations of crambin. In this way we can produce 5330
alternative conformations for 1mlt from the coordinates of
proteins 1ppt through 1tim, 4769 for 1ppt using lcrn through
1tim, and so on, down to 12 for 2cna. Of course, this scheme
produces no alternative conformations for the largest protein,
1tim, and less than 100 each for the next three largest, but
the average number of conformations per protein was 1621.

Given some classification scheme, as in Table I, there is a
linear polynomial E(c) in the e;/’s corresponding to the set of
contacts for each conformation ¢ of a protein. Then every
alternative conformation of every protein produces a homo-
geneous inequality E(native) < E(alternative), and the set of
inequalities can be solved numerically (Jurs, 1986) for the set
of e;’s. The initial classification used in these studies, shown
in Table 11, is based on conventional wisdom about grouping
together helix-formers vs helix-breakers for short-range in-
teractions, while residue types are grouped according to general
hydrophobicity for the medium- and long-range interactions.
[t is easy to set up the corresponding 90 000 inequalities for
the 55 proteins (the first 56 except for 2pka, as explained
earlier) and solve them for the 4 X 7 X 6/2 = 84 adjustable
e;’s. If such a set of linear inequalities has any feasible solution
at all, it is generally not unique but rather a convex region of
parameter space. We can interpret a given solution in chemical
terms as saying there are certain kinds of interactions that are
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Table II: The Standard Starting Classification Used To Eventually
Find Broader Classifications with More Predictive Power®

separation class
3 1 ={G}, 2 = |ALICMF}, 3 = {VHS}, 4 = {P}, 5 =
{RDEQ}, 6 = {TKN}, 7 = {YW]}
4 1 ={G}, 2 ={ALICMF}, 3 = {VHS}, 4 = {P}, 5 =

{RDEQ}, 6 = {TKN}, 7 = {YW]

57 1 ={G}, 2 = {AV}, 3 = {LICMF}, 4 = [YHWST]}, 5§ =
{KR}, 6 = {P}, 7 = {DNEQ}

8o 1 =1{G}, 2 = {AV}, 3 = {LICMF}, 4 = [YHWST}, 5 =
{KR}, 6 = {P}, 7 = {DNEQ]

% Amino acid residue contacts are grouped by sequence separation

and by subsets of types of residue indicated by the single-letter residue
code.

particularly rare or particularly common in the native con-
formations of each protein compared to the respective alter-
native nonnative conformations. Other solutions within the
convex feasible region may have substantially different in-
terpretations as to what kinds of interactions are important.
When residue types are grouped into many small classes, there
will be many different kinds of interactions, each with its
adjustable e;; parameter. Then the solution of the set of in-
equalities tends to depend on some trivial combination of
preponderances or lacks of some of these interactions in the
native structures at hand, whereas the next protein may not
fall into that particular pattern. Indeed, this is exactly what
happened: the detailed residue classification of Table II leads
easily to solutions that vary considerably, depending on which
proteins were used to generate the set of inequalities, and the
resulting potential functions seldom showed a preference for
the native set of contacts over those of alternative conforma-
tions for any protein outside the training set.

On the other hand, if residues are grouped into a few large
classes, there will be a small number of kinds of contacts and
a correspondingly small number of adjustable parameters.
Findings a feasible solution tends to be more difficult, but if
one exists, it tends to depend on more general trends in the
kinds of contacts found in native proteins, and therefore the
likelihood of successful predictions is greater. A very general
way to find the potential with the greatest predictive power
would be to start with one sequence separation range (3-=)
and all 20 residue types contained in a single class. Then
systematically try all combinations of classification schemes
in order of increasing detail until one yields a feasible solution
to the corresponding inequalities. This was computationally
tractable for the small square-lattice problems of the previous
section but not for the more elaborate classifications required
for these proteins. Instead I approached the problem in the
opposite order: start with the very detailed classification in
Table II, which leads easily to a solution of the corresponding
inequalities; then, starting with the first separation range,
attempt to redistribute the residues of one class into some
combination of the other classes of that range, and check that
a feasible solution can still be obtained. Eventually no further
residue class in any sequence range can be eliminated. The
process can consume literally weeks of CPU time on an Iris
4D /220, since there are many ways to reassign the classes of
all the residues contained in the class to be eliminated, and
sometimes thousands of ways had to be tried before either
finding a feasible combination or eliminating all possibilities
and going on to the next class for elimination. The result is
Table ITI. Lumping all types of residues into a single class
for the purposes of short- and medium-range interactions is
partly an artifact of the classification simplification procedure,
which starts with the short-range separations. In part, how-
ever, this seems to be a genuine trend inherent in the data.
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Table 11I: Contact Potential Function That Favors 45 Proteins’
Crystal Structures?

separation class ey

3 fall} (~0.008)

4 {all} (0.004)

5-17 {all} (0.021)

8- 1 = {GYHSRNE} /-0.012 -0.074 -0.054 0.123
2 = {AV} -0.074 0.123 -0317 0.156
3 = {LICMF} -0.054 -0.317 -0.263 -0.010
4 = {PWTKDQ} 0.123  0.156 -0.010 -0.004,

4 Classification of amino acid residue contacts is by sequence sepa-
ration and by subsets of types of residue indicated by the single-letter
residue code. The third column gives the matrix of empirically deter-
mined interaction parameters for contacts between residues of the var-
ious classes.

For example, I have obtained similar preliminary results using
an alternative simplification procedure that tries to reduce the
information theory entropy of the total classification in all
separation ranges at once. Otherwise, Table III makes some
degree of sense: helix formation is slightly favorable, whereas
medium-range contacts are discouraged; the main factor is to
form hydrophobic—hydrophobic long-range contacts while
secondarily avoiding hydrophilic-hydrophilic contacts. It is
probably an artifact of the fitting procedure that interactions
between large hydrophobic residues and Ala or Val are singled
out as being particularly important. Given that we see here
just one point in a large feasible space and that the classifi-
cation scheme and interaction parameters of Table III are quite
dependent on which proteins were included in the study and
on the proposed starting classification, it would be unwise to
comment further on the physical significance of the result.
Unlike least-squares fits, the solution found for a set of ine-
qualities can be substantially shifted by adding one new protein
or by suggesting a different starting classification.

At the solution shown in Table III, only eight proteins had
one or more inequalities that were active: 4pti, 2ebx, lccs,
2gn5, 4cyt, 2cdv, 1hmgq, and 2mhb. Thus, a few of the al-
ternative conformations available to only these eight proteins
are what determine the adjustable interaction parameters e;;
in the table. Of the 56 proteins for which alternative con-
formations had been calculated at all, another 37 favored the
native over all alternatives by substantial margins (>0.2).
These correctly predicted proteins ranged in size from 1fdx
with 54 residues to 2cna with 237 residues. That leaves 11
proteins where at least one alternative conformation had a
function value lower than that of the native: 1mit, 1ppt, lcrn,
3rxn, 2ovo, 2pka, lhip, 2fd1, 3c2c, lecd, and 4fxn. The ex-
tremely small peptides melittin (1mlt) and avian pancreatic
polypeptide (1ppt) seem to be difficult to bring into,any general
scheme, possibly because they are treated as isolated monomers
in the calculations, whereas crystal packing and the tight
tetramer of melittin may significantly affect their observed
conformations. Porcine kallikrein (2pka) is not represented
in these calculations as even a whole domain for technical
reasons explained above, so failure to fit it is actually appro-
priate. Crambin (lcrn) is an anomalously hydrophobic small
protein crystallized in dilute ethanol, so failure here is perhaps
excusable. The remaining seven mispredictions are not easy
to explain away. They are in error because the best alternative
conformation had a better contact function value than that
of the native, but the margins of error are not significantly
different from the margins of success for the 37 correctly
predicted proteins (3rxn 0.7, 2ovo 0.3, 1hip 1.7, 2fd1 1.5, 3c2¢c
0.9, lecd 1.9, and 4fxn 14.1). Indeed, if the seven mispredicted
proteins are included in the training set, another residue
classification and interaction parameter set can be calculated,
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having similar numbers of residue classes and similar predictive
powers. The main change is that a different 11 or 12 proteins
are mispredicted. By including more proteins in the training
set, it is certainly possible to fit all 52 proteins (leaving out
only Imlt, 1ppt, lcrn, and 2pka), but I have so far been unable
to find a classification scheme that is as simple as that of Table
II1. Obviously this isn't the last word on the subject, and every
attempt will be made to correctly predict the native confor-
mations of more proteins.

Future use of this sort of contact potential would be for
predicting the conformation of a protein having known se-
quence, but of course no known crystal structure in the Protein
Data Bank. As long as there is some crystal structure of a
larger protein where a contiguous chain segment of the right
length approximately adopts the native structure of the novel
protein, it is very straightforward to find this segment, and
the search would require only an hour or two of computer time.
Note that one needs no assumptions about sequence homology.
Any completely unrelated protein of known three-dimensional
structure is an eligible source of alternative conformations, and
all you have to do is choose the conformation or conformations
with lowest potential. Given that there seem to be a limited
number of structural motifs, having a correct one in the Protein
Data Bank is not unlikely. On the other hand, suppose the
novel protein is so fortunate as to have a crystal structure for
a closely homologous protein. It is still likely that there will
be no completely contiguous portion of the known that matches
the native of the novel protein, simply because of the usual
insertions and deletions one sees on the surfaces of globular
proteins. This means that a general prediction program built
around one of these contact potentials would have to set up
a correspondence between the novel sequence and the known
structure that was not necessarily just a displacement of
contiguous segments but must also allow for insertions and
deletions. This problem is being actively explored.

CONCLUSIONS

As long as two-body interactions are sufficient to approx-
imate the free energy of a protein, then a potential designed
as a function of only residue-residue contacts can adequately
include solvation effects implicitly. It is no coincidence that
the proteins that appear to have unique native structures are
globular. If the major contributions to a protein’s free energy
as a function of conformation act effectively over only short
distances through space, then a protein’s native structure must
be globular. Indeed a carefully chosen short-distance definition
of contacts in protein crystal structures can be used to devise
a simple function that correctly prefers the native conformation
of several proteins over thousands of alternative structures and
can correctly predict the native to be optimal for many more
proteins. Key to this success are (1) a definition of a resi-
due-residue contact that is relatively unaffected by changing
amino acid side chains and (2) use of a finite discrete space
of alternative conformations derived from other protein crystal
structures. Refinements could eventually produce a potential
capable of preferring the X-ray crystal structure of most
proteins over alternative conformations. Then when presented
with a novel amino acid sequence having little or no resem-
blance to those found in the Protein Data Bank, current
methodology would choose the contiguous segment out of all
the known protein structures that the contact function prefers.
If there is a known protein having a domain of the correct
conformation (structural homology, but not necessarily any
sequence homology), then the potential function would make
this its prediction and be correct in doing so. If the only
structural match in the database involved substantial insertions



Biochemistry 1991, 30, 4237-4244 4237

and deletions, then the current methods would have to be
improved in order to make a correct prediction.
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ABSTRACT: Protein folding and the transfer of hydrocarbons from a dilute aqueous solution to the pure liquid
phase are thermodynamically similar in that both processes remove nonpolar surface from water and both
are accompanied by anomalously large negative heat capacity changes. On the basis of a limited set of
published surface areas, we previously proposed that heat capacity changes (AC ) for the transfer of
hydrocarbons from water to the pure liquid phase and for the folding of globular protems exhibit the same
proportionality to the reduction in water-accessible nonpolar surface area (A4,,) [Spolar, R. S,, Ha, J. H,,

& Record, M. T, Jr. (1989) Proc. Natl. Acad. Sci. US.A. 86, 8382-8385]. The consequence of this proposal
is that the experlmental AC, for protein folding can be used to obtain estimates of A4, and of the contribution
to the stability of the foldecf state from removal of a nonpolar surface from water. IPn this paper, a rigorous
molecular surface area algorithm [Richmond, T. J. (1984) J. Mol. Biol. 178, 63-89] is applied to obtain
self-consistent values of the water-accessible nonpolar surface areas of the native and completely denatured
states of the entire set of globular proteins for which both crystal structures and AC of folding have been
determined and for the set of liquid and llqueflable hydrocarbons for which AC of transfer are known,
Both processes (hydrocarbon transfer and protein folding) exhibit the same direct proportlonallty between
AC and A4,,. We conclude that the large negative heat capacity changes observed in protein foldmg and
other self-assembly processes involving proteins provide a quantitative measure of the reduction in the
water-accessible nonpolar surface area and of the contribution of the hydrophobic effect to the stability

of the native state and to protein assembly.

Noncovalent assembly processes involving proteins, such as
folding, oligomerization, and ligand binding, are typically
accompanied by large reductions in water-accessible nonpolar
surface area. Kauzmann (1959) proposed that the removal
of nonpolar amino acid side chains from water (the
“hydrophoblc effect”) should provide a large driving force
(AGhyd) for assembly or association processes involving pro-
teins. To quantify the contribution of AGh 4 to the observed
standard free-energy change (AG.,,) for the assembly or as-
sociation process, most work has focused on analyzing the free
energy of transfer (AG,,) of amino acids or their analogues
from water to an organic solvent (Cohn & Edsall, 1943;
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! Department of Biochemistry.

§ Department of Chemistry.

Nozaki & Tanford, 1971; Fauchére & Pliska, 1983) or to the
gas phase (Wolfenden et al., 1981). Various hydrophobicity
scales have been proposed that rank amino acids according
to either their experimental transfer behavior [cf. Cornette et
al. (1987)] or their observed distribution in protein crystal
structures between the exterior and interior of the folded form
(Janin, 1979; Rose et al., 1985a; Miller et al., 1987a).
However, a comparison of hydrophobicity scales reveals that,
in general, values of AG;, from different scales do not correlate
well with each other and that even the relative ranking of
amino acids varies from scale to scale (Rose et al., 1985b).
Alternatively, the relationship between AG,, of amino acids
and the rotal water-accessible surface has been examined
(Chothia, 1974) as well as the relationship between AG,, and
surface area at the functional group level (Eisenberg & Mac-
Lachlan, 1986; Ooi et al., 1987). The use of these relationships
to estimate values of AG;yd is complicated by the same problem
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