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ABSTRACT: Predicting the three-dimensional structure of a protein given only its amino acid sequence is 
a long-standing goal in computational chemistry. In the thermodynamic approach, one needs a potential 
function of conformation that resembles the free energy of the real protein to the extent that the global 
minimum of the potential is attained by the native conformation and no other. In practice, this has never 
been achieved with certainty because even with greatly simplified representations of the polypeptide chain, 
there are an astronomical number of local minima to examine. If one chooses instead a protein representation 
with only a large but manageable number of discrete conformations, then the global preference of the potential 
for the native can be directly verified. Representing a protein as a walk on a two-dimensional square lattice 
makes it easy to see that simple functions of the interresidue contacts are sufficient to globally favor a given 
"native" conformation, as long as it is a compact, globular structure. Explicit representation of the solvent 
is not required. Another more realistic way to confine the conformational search to a finite set is to draw 
alternative conformations from fragments of larger proteins having known crystal structure. Then it is possible 
to construct a simple function of interresidue contacts in three dimensions such that only 8 proteins a re  
required to determine the adjustable parameters, and the native conformations of 37 other proteins are 
correctly preferred over all alternative conformations. The deduced function favors short-range back- 
bone-backbone contacts regardless of residue type and long-range hydrophobic associations. Interactions 
over long distances, such as electrostatics, are not required. 

M a n y  globular proteins at equilibrium are at the global 
minimum of free energy over the kinetically accessible region 
of conformation space. (Anfinsen, 1973; Go, 1983) In the 
thermodynamic approach to predicting protein folding from 
amino acid sequence, one attempts to simulate this by choosing 
some kind of potential function of conformation and then 
searching for the conformation(s) having the global minimal 
value of this function. There are two interrelated issues that 
need to be solved in order to ensure the calculations are feasible 
and to get correct answers: how should conformations be 
represented, and how should the function be constructed? The 
standard approach to computational conformational analysis, 
molecular mechanics, represents each atom in the molecule 
as a point in three-dimensional Cartesian space, so that atoms 
can move in a continuous fashion by smoothly changing their 
x ,  y, and z coordinates. Sometimes the atomic Cartesian 
coordinates are calculated from specified internal coordinates, 
such as bond lengths, bond angles, and dihedral angles, but 
in any case, conformational movements are smooth and con- 
tinuous. Potential functions of conformation are generally 
chosen as long sums of two-, three-, and four-atom interactions, 
where each term is some reasonable continuous function of 
atomic coordinates. The adjustable parameters within these 
terms are subsequently varied so as to reproduce some selection 
of experimentally observed conformations, crystal structures, 
known bond rotation barriers, enthalpies of sublimation, vi- 
brational frequencies, etc. The intent is that the function 
should simulate the enthalpy of a molecule at  room temper- 
ature (or sometimes at 0 K), and entropic effects, such as 
solvation and conformational variability at room temperature, 
must be simulated by lengthy molecular dynamics calculations 
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using this same function. Even verification of the function 
with respect to energetically determined phenomena is typically 
limited. In particular, agreement with experimentally observed 
conformations means that the function should have a sub- 
stantial local minimum relatively close (<0.1 A) to the ex- 
perimental value. Apparently any reasonable potential having 
interatomic attractions but also repulsions (simulating van der 
Waals overlaps, covalent bond compression, and so on) must 
have a number of local minima that increases rapidly with the 
number of atoms. Thus, molecular mechanics potential 
functions are generally tuned to agree well with the experi- 
mentally observed conformations of a selection of molecules 
in the vicinity of those conformations, but in a more global 
sense, there may be other much deeper local minima corre- 
sponding to very different conformations. I am especially 
concerned that standard functions do not necessarily favor the 
crystal structure of a protein over an alternative folding 
(Bryant & Amzel 1987; Novotny et al., 1988). My co-workers 
and I have devised potential functions having better global 
properties (Crippen & Snow, 1990; Seetharamulu & Crippen, 
1991) in the sense that the functions are intended to simulate 
the free energy of solvated polypeptides and that the global 
minimum should be near the crystal structure for a selection 
of small proteins. This is a qualitatively different parame- 
ter-adjustment task, made extremely difficult because the 
number of local minima apparently increases exponentially 
with the size of the molecule (Crippen, 1975). Since the 
molecule is represented in terms of interacting particles pos- 
itioned by smoothly varying Cartesian coordinates and the 
potential is a continuous function of these coordinates, even 
finding a local minimum requires converging on it with a 
nonlinear minimization algorithm, much less verifying that 
the near-native minimum is indeed the very lowest of all local 
minima. 

One way of making the problem more tractable is to convert 
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from a continuous conformation space to a finite discrete one, 
mathematically speaking. Instead of allowing atomic coor- 
dinates to vary continuously so that important conformations 
correspond to local minima of the potential over the continuous 
space of all conformations, it would be much more convenient 
if there was just a (possibly long but) finite list of allowed 
conformations a protein could take on. Then, if one of these 
is designated to be the native conformation, the potential is 
merely required to have a lower value for it than for any other 
conformation in the list. Verification of the requirement 
amounts to simply evaluating the function for each confor- 
mation in  the finite discrete conformation space. There are 
two plausible ways to construct such a discrete space. The 
traditional way in theoretical polymer chemistry is to model 
a protein as a walk on some sort of lattice, so that for short 
chains all conformations can be examined, subject to the 
constraints of certain allowed interresidue bond lengths and 
bond angles. The second way is to use pieces of the known 
protein crystal structures as examples of how polypeptides can 
fold. The advantage is that the conformations are obviously 
much more realistic, but since there are only so many protein 
crystal structures, not all possible conformations would be 
explored. In this paper, I will use the lattice approach to 
establish some important general conclusions about potential 
functions and the uniqueness of the native conformation. Then 
I will turn to the second approach to use these conclusions for 
producing a potential that has considerable global predictive 
power. 

Others have been using both kinds of discrete conformation 
spaces for some time, particularly the lattice idea. However, 
it is important to note the sometimes subtle differences between 
related studies and this one. For instance, Cove11 and Jernigan 
( 1  990) looked at all conformations available to a few proteins 
corresponding to Hamilton walks on certain lattices and 
showed that a function of interresidue contacts previously 
derived from a survey of protein crystal structures could rank 
the native conformation among the best 2%. Lau and Dill 
( 1  989) found that only certain kinds of amino acid sequences 
can produce a unique global minimum of a particular ex- 
tremely simple contact potential for two-dimensional 
square-lattice walks. Sippl (1 990) constructed a continuous 
function of continuously variable interresidue distances by 
surveying the kinds of conformations seen in the protein crystal 
data for short segments. Here we treat a related but funda- 
mentally different question: Given the finite set of all possible 
conformations and given one of these as the “native” structure, 
can  one devise a potential function that clearly favors the native 
over all the rest? If so, does this function have any predictive 
power? What restrictions are there on the types of such 
functions and the kinds of conformations that can be globally 
favored? The next section explains how I first examined 
two-dimensional square-lattice models of proteins, because it 
is easy to explore all conformations and because the functional 
forms available for potentials are rather limited. Then the 
following section shows how to generalize the lattice results 
to a much more realistic representation of proteins in terms 
of three-dimensional atomic coordinates taken from protein 
X-ray crystal structures. 

SQUARE-LATTICE MODEL 
Represent a protein having n residues as a self-avoiding walk 

of n - 1 steps on a very large two-dimensional square lattice. 
Let the lattice spacing be unity. Sequentially adjacent residues 
are distance 1 apart. Each occupied lattice point has a se- 
quence number 1 I i I n and a type 1 I ti I 20, corresponding 
to the 20 kinds of naturally occurring amino acids. 
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FIGURE 1: Some alternative conformations of a 16-residue walk on 
a square lattice. The arbitrarily chosen *native” conformation (a), 
showing the arbitrarily chosen sequence of residue types. The last 
residue in the sequence has type 19. Alternative rigid conformations 
are shown in b and c. Conformation d is not rigid, as indicated by 
the two alternative placements of its last residue. Conformation e 
is the lattice analogue of a helix. 

Define a contact to be when adjacent lattice points are 
occupied by two residues that are not sequentially adjacent: 
dii I d, = 1 and li - jl > 1. Since the walks are self-avoiding, 
a contact between residues i and j implies li - jl 1 3.  

Two conformations, c and c’, of the same protein are defined 
as different if corresponding residues cannot be superimposed 
by translation, rotation, and mirror inversion. Here, 
“corresponding” means that the two residues have the same 
sequence number. 

Let S, be the set of contacts occurring in conformation c. 
Identify the contacts by sequence separation, type of residue 
with lower sequence number, and type of residue with higher 
sequence number. Since the same residue type may occur 
more than once in the protein, the list of contacts may have 
more than one entry with the same description. We want a 
potential function (mimicking the free energy of a real protein 
as a function of conformation) that depends only on the 
contacts: E ( c )  = E(S,).  This assumes that only two-body 
interactions are important. In particular, assume the effects 
of contacts are simply additive: 

where f may take into account the types of residues involved, 
their sequence separation, and even which residue is higher 
in sequence number. 

For n residues on an m X m lattice where m >> n, there may 
be nrr adjacent occupied pairs of points (residue-residue 
contacts plus n - 1 sequentially adjacent residue pairs), nrs 
residue-solvent contacts, and nss solvent-solvent contacts. 
Then 

n , = n - l + x  

nrs = 2n + 2 - 2x 

nss = 2 ( m  - 1)m - 3n - 1 + x 
where always x 2 0, x = 0 for a fully extended conformation, 
and x >> 0 for globular conformations. Because all three types 
of contacts can be expressed in terms of a single parameter, 
it is sufficient to take into account the residueresidue contacts 
for defining E ,  even though solvation of real proteins is an 
important factor in their free energy. 

We define a conformation c to be rigid if there is no c‘ # 
c such that S,  = S,. For d, = 1, that implies that rigid 
conformations tend to be rather compact. In Figure 1, con- 

( 2 )  
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Table I :  Contact Potential Function That Favors Figure la” 

Crippen 

not as favorable as others”. Although this potential function 
is sufficient to make conformation a the global minimum over 
all 802 074 alternatives, it can be viewed as having been de- 
termined by looking at only three of them! Alternative l is 
just conformation a with the sequence reversed; 2 is confor- 
mation b; and 3 is conformation c. Then in the search, 1 and 
2 are active in setting up the classification of ranges and residue 
type classes, and 1 and 3 are active in determining the in- 
teraction tables. Of course the potential can be viewed as being 
determined by other sets of alternatives (just as there are many 
choices of basis in linear programming), but the important 
thing is that at least one set of critical alternatives is so small. 

Outside of the rigidity of conformer a, there is nothing very 
special about it, and I have been able to produce potential 
functions that uniquely favor various other conformations with 
other sequences, or indeed, that simultaneously favor the re- 
spective native conformation of more than one “protein”. The 
helical conformation e, for example, is uniquely favored by 

separation 3, class 1 = (all), e = (-1) 

separation 4-m, class 1 = {all}, e = (0) (3) 

There is a simple procedure to automatically generate a 
small set of conformations that includes those critical for 
determining the potential function. Let every residue in the 
given protein be a node in a graph, and connect two nodes 
whenever they correspond to sequentially adjacent (Le., 
bonded) residues or to residues in contact. Now any Hamilton 
walk on this graph corresponds to a reassignment of residue 
sequence numbers and hence residue types to the nodes, and 
all edges not traversed in the walk are contacts. Because 
contacts are distinguished only on the basis of sequence sep- 
aration and the two residue types, two different walks may 
produce the same set of contacts. Thus, conformation a gives 
rise to 552 different walks on a 4 X 4 lattice, of which there 
are only 69 different sets of contacts, and these drive the 
combinatorial search to the same potential function as before. 
If conformation e is viewed as a homopolymer, there are 116 
walks, yielding only 16 distinct sets of contacts, resulting in 
the same potential as before. 

PROTEIN CRYSTAL STRUCTURES 
Of course, the goal is to construct a potential function that 

can be used to predict the conformations of real proteins 
composed of atoms having three-dimensional, continuous, 
Cartesian atomic coordinates. The foregoing model studies 
suggest that some kind of residue-residue contact function 
would be adequate, even if solvent is not explicitly represented 
and the contact terms operated over only short distances. The 
key problems then are to define interresidue contacts for real 
protein structures and to contrast the native conformation with 
a large but manageable finite set of very plausible alternative 
conformations. 

Consider a set of 57 high-resolution (12.5 A) small to 
moderate sized (1250 residues) protein crystal structures 
selected from the Brookhaven Protein Data Bank (Bernstein 
et al., 1977) to avoid obvious duplication, large ligands, and 
substantial unresolved regions: lmlt, Ippt, Icrn, 3rxn, Ifdx, 
20v0, 4pti, 2mt2, 2ebx, 1x13, 2abx, 2icb, Zpka, 351c, lcc5, 
Ihip, 2b5c, 2gn5, 3fxc, 2pcy, 4cyt, 2fd1, 2cdv, Irei, 3cpv, Iccr, 
3c2c, lhmq, 2rhe, lcy3, 155c, lpp2, lbp2 lrn3, 2ccy, laza, 
1121, lecd, 4fxn, Zmhb, 2hhb, 2sns, lfxl, 21hb, 2sod, l lh l ,  
3mbn, 4dfr, Ilzm, 3wga, lgcr, 2stv, 3fab, Ippd, 2act, 2cna, 
and ltim (listed in order of increasing number of residues). 
Of each data set, only the first polypeptide chain was used, 
and it was read only up to the point of the first break in the 

seuaration class 

“Classification of contacts is by sequence separation and by subsets 
of  numeric residue type; the third column gives the matrix of empiri- 
cally determined interaction parameters for contacts between residues 
of the various classes. 

formations a, b, c, and e are all rigid, but conformation d is 
not, because there are two ways to place its last residue and 
the list of contacts would be exactly the same for both. One 
way distinguish the two alternatives for conformation d would 
be that in one conformation, one solvent “molecule” could be 
in contact simultaneously with residue sequence numbers 15 
and 16, while in the other conformation, another solvent 
molecule would be in contact with 6 and 16. However, we have 
assumed that the potential function depends only on a sum 
of two-body contacts. Another way to distinguish the two 
alternatives would be to raise d,  > v‘2. Similarly for d, = 
1, the lattice helix analogue e is rigid, but an extended chain 
is not. Raising the cutoff to 4 2  < d, < 2 allows the extended 
chain to be rigid. Since in real polypeptides, a long isolated 
a-helix can be stable while a single extended strand is not, we 
keep the cutoff d, = 1. If we want the native conformation 
cnat to be the unique global minimum of E,  Le., E(cnat) < E(c)  
for all c # cnat, then the native must be a rigid conformation. 

For a 16-residue chain on a square lattice, there are 802075 
distinct conformations, not counting translations, rotations, 
and mirror inversions. Is it possible to build a potential E of 
the form in eq 1 such that the arbitrarily selected “native” 
conformation (Figure l a )  with its arbitrarily chosen amino 
acid sequence can be the unique global minimum of E? To 
eliminate any ambiguities about uniqueness, letfin eq 1 be 
an integer-valued function of the contacts. More specifically, 
f first groups contacts into a number of ranges of sequence 
separations, where the first range includes separations of 3 and 
perhaps more, and the last range covers all separations greater 
than the upper limit of the previous range. Then for each 
range, residue types are grouped into a number of mutually 
exclusive and comprehensive classes. Finally, each range has 
a table of integers e,  so that f ( k )  = eij, where the contact k 
involved a residue of type class i in contact with a sequentially 
higher residue of type class j .  The simple-minded way to 
determine f is to carry out a branch-and-bound depth-first 
search over the number of ranges, the minimal sequence 
separation of each range, the number of classes in each range, 
the assignment of residue types to the classes in each range, 
whether the interaction table should be symmetric, and finally 
what integer values should be put into the tables, starting with 
small absolute values. There are two checks along the way 
that keep the combinatorial explosion manageable. The first 
is that a given choice of ranges and their sequence separations 
may be eliminated if it fails to distinguish between the native 
and some alternative set of contacts even when residue types 
are fully separated into 20 classes in each range. The second 
check is that the chosen distribution of residues into classes 
in each range must distinguish between the native and each 
alternative. For example, exactly the same nine contacts occur 
in Figure 1 (conformations a and b) if there is only one range, 
Le., the potential does not depend on sequence separations. The 
first solution found by the branch-and-bound search happens 
to be Table I, which might be paraphrased as “don’t count 
hairpin turn contacts, but otherwise make as many contacts 
as possible, although contacts involving residue type 19 are 
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chain. In the case of 2pka, that meant only the first 77 residues 
were included, because there follows an uninterpretable portion 
of the electron-density map. Since that part of the chain 
comprises only some of a domain, 2pka was used for generating 
alternative conformations of small proteins, but when it comes 
to prediction, it is inappropriate to demand that a potential 
function should fold these residues correctly in the absence 
of the rest of the domain. 

In order to devise a contact potential function to favor these 
crystal structures over all alternative conformations, we must 
define a contact for three-dimensional Cartesian coordinates 
of atoms. Consider only the backbone N and 0 atoms and 
side-chain C@ atom of each residue as forming contacts; con- 
struct the approximate position of an artificial C@ for each Gly 
residue. A backbone-backbone carbonyl-to-amide contact 
must have the 0-N distance <3.2 A and the C-N distance 
>3.9 A. A backbone-side-chain contact is counted if the 
distance between N or 0 and the C@ is less than 5.0 A; for 
side-chainside-chain contacts, the cutoff is 9.0 A. In addition, 
for side-chain-side-chain or backbone-side-chain contacts, 
there must be no other atom between the interacting pair closer 
than 1.4 A to the line segment joining them. The idea is that 
much the same side-chain contacts could be made after point 
mutations by permitting small shifts in the conformation. 

Using the above definition of a contact, one can convert a 
set of atomic coordinates into a list of contacts, where we 
enumerate only three items per contact: the sequence sepa- 
ration of the atoms in contact, and the types of the two amino 
acid residues involved. Only sequence separations of three or 
more are counted, and if a backbone atom is involved, its 
residue type is noted as Gly. The contact definition and 
enumeration scheme are crucial to the success of what follows. 
Looser definitions of what constitutes a contact fail to dis- 
criminate between the native and alternative conformations. 

Instead of the use of walks on a lattice to generate a finite 
set of alternative conformations, the 57 crystal structures 
themselves can be used. For example, crambin (lcrn) has 46 
residues, while rubredoxin (3rxn) has 52. Use of the amino 
acid sequence of lcrn applied to the coordinates of 3rxn res- 
idues 1-46, 2-47, ..., 7-52 produces seven plausible alternative 
conformations of crambin. In this way we can produce 5330 
alternative conformations for 1 mlt from the coordinates of 
proteins lppt through Itim, 4769 for lppt using lcrn through 
1 tim, and so on, down to 12 for 2cna. Of course, this scheme 
produces no alternative conformations for the largest protein, 
ltim, and less than 100 each for the next three largest, but 
the average number of conformations per protein was 1621. 

Given some classification scheme, as in Table I, there is a 
linear polynomial E(c) in the eiis corresponding to the set of 
contacts for each conformation c of a protein. Then every 
alternative conformation of every protein produces a homo- 
geneous inequality ,??(native) < ,??(alternative), and the set of 
inequalities can be solved numerically (Jurs, 1986) for the set 
of eij's. The initial classification used in these studies, shown 
in Table 11, is based on conventional wisdom about grouping 
together helix-formers vs helix-breakers for short-range in- 
teractions, while residue types are grouped according to general 
hydrophobicity for the medium- and long-range interactions. 
It is easy to set up the corresponding 90 000 inequalities for 
the 55 proteins (the first 56 except for 2pka, as explained 
earlier) and solve them for the 4 X 7 X 6/2 = 84 adjustable 
eij's. If such a set of linear inequalities has any feasible solution 
at  all, it is generally not unique but rather a convex region of 
parameter space. We can interpret a given solution in chemical 
terms as saying there are certain kinds of interactions that are 
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Table 11: The Standard Starting Classification Used To Eventually 
Find Broader Classifications with More Predictive Powef 
separation class 

1 = (G), 2 = {ALICMF), 3 = (VHSJ, 4 = {PI, 5 = 

1 = {GI, 2 = {ALICMF), 3 = (VHSJ, 4 = (PI, 5 = 

1 = (GI, 2 = (AV), 3 = (LICMF), 4 = (YHWST), 5 = 

1 = {GI, 2 = {AV), 3 = (LICMFJ, 4 = (YHWST), 5 = 

3 

4 

5-7 

8-m 

{RDEQ), 6 = {TKN), 7 = (YW) 

(RDEQJ, 6 = (TKNJ, 7 = (YWJ 

(KR}, 6 = {PI, 7 = {DNEQ} 

IKRI, 6 = IPI, 7 = IDNEOI 
a Amino acid residue contacts are grouped by sequence separation 

and by subsets of types of residue indicated by the single-letter residue 
code. 

particularly rare or particularly common in the native con- 
formations of each protein compared to the respective alter- 
native nonnative conformations. Other solutions within the 
convex feasible region may have substantially different in- 
terpretations as to what kinds of interactions are important. 
When residue types are grouped into many small classes, there 
will be many different kinds of interactions, each with its 
adjustable e,j parameter. Then the solution of the set of in- 
equalities tends to depend on some trivial combination of 
preponderances or lacks of some of these interactions in the 
native structures at hand, whereas the next protein may not 
fall into that particular pattern. Indeed, this is exactly what 
happened: the detailed residue classification of Table I1 leads 
easily to solutions that vary considerably, depending on which 
proteins were used to generate the set of inequalities, and the 
resulting potential functions seldom showed a preference for 
the native set of contacts over those of alternative conforma- 
tions for any protein outside the training set. 

On the other hand, if residues are grouped into a few large 
classes, there will be a small number of kinds of contacts and 
a correspondingly small number of adjustable parameters. 
Findings a feasible solution tends to be more difficult, but if 
one exists, it tends to depend on more general trends in the 
kinds of contacts found in native proteins, and therefore the 
likelihood of successful predictions is greater. A very general 
way to find the potential with the greatest predictive power 
would be to start with one sequence separation range (3-a) 
and all 20 residue types contained in a single class. Then 
systematically try all combinations of classification schemes 
in order of increasing detail until one yields a feasible solution 
to the corresponding inequalities. This was computationally 
tractable for the small square-lattice problems of the previous 
section but not for the more elaborate classifications required 
for these proteins. Instead I approached the problem in the 
opposite oqder: start with the very detailed classification in 
Table 11, which leads easily to a solution of the corresponding 
inequalities; then, starting with the first separation range, 
attempt to redistribute the residues of one class into some 
combination of the other classes of that range, and check that 
a feasible solution can still be obtained. Eventually no further 
residue class in any sequence range can be eliminated. The 
process can consume literally weeks of CPU time on an Iris 
4D/220, since there are many ways to reassign the classes of 
all the residues contained in the class to be eliminated, and 
sometimes thousands of ways had to be tried before either 
finding a feasible combination or eliminating all possibilities 
and going on to the next class for elimination. The result is 
Table 111. Lumping all types of residues into a single class 
for the purposes of short- and medium-range interactions is 
partly an artifact of the classification simplification procedure, 
which starts with the short-range separations. In part, how- 
ever, this seems to be a genuine trend inherent in the data. 
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having similar numbers of residue classes and similar predictive 
powers. The main change is that a different 11 or 12 proteins 
are mispredicted. By including more proteins in the training 
set, it is certainly possible to fit all 52 proteins (leaving out 
only lmlt, lppt, lcrn, and 2pka), but I have so far been unable 
to find a classification scheme that is as simple as that of Table 
Ill. Obviously this isn't the last word on the subject, and every 
attempt will be made to correctly predict the native confor- 
mations of more proteins. 

Future use of this sort of contact potential would be for 
predicting the conformation of a protein having known se- 
quence, but of course no known crystal structure in the Protein 
Data Bank. As long as there is some crystal structure of a 
larger protein where a contiguous chain segment of the right 
length approximately adopts the native structure of the novel 
protein, it is very straightforward to find this segment, and 
the search would require only an hour or two of computer time. 
Note that one needs no assumptions about sequence homology. 
Any completely unrelated protein of known three-dimensional 
structure is an eligible source of alternative conformations, and 
all you have to do is choose the conformation or conformations 
with lowest potential. Given that there seem to be a limited 
number of structural motifs, having a correct one in the Protein 
Data Bank is not unlikely. On the other hand, suppose the 
novel protein is so fortunate as to have a crystal structure for 
a closely homologous protein. It is still likely that there will 
be no completely contiguous portion of the known that matches 
the native of the novel protein, simply because of the usual 
insertions and deletions one sees on the surfaces of globular 
proteins. This means that a general prediction program built 
around one of these contact potentials would have to set up 
a correspondence between the novel sequence and the known 
structure that was not necessarily just a displacement of 
contiguous segments but must also allow for insertions and 
deletions. This problem is being actively explored. 

CONCLUSIONS 
As long as two-body interactions are sufficient to approx- 

imate the free energy of a protein, then a potential designed 
as a function of only residue-residue contacts can adequately 
include solvation effects implicitly. It is no coincidence that 
the proteins that appear to have unique native structures are 
globular. If the major contributions to a protein's free energy 
as a function of conformation act effectively over only short 
distances through space, then a protein's native structure must 
be globular. Indeed a carefully chosen short-distance definition 
of contacts in protein crystal structures can be used to devise 
a simple function that correctly prefers the native conformation 
of several proteins over thousands of alternative structures and 
can correctly predict the native to be optimal for many more 
proteins. Key to this success are (1) a definition of a resi- 
due-residue contact that is relatively unaffected by changing 
amino acid side chains and (2) use of a finite discrete space 
of alternative conformations derived from other protein crystal 
structures. Refinements could eventually produce a potential 
capable of preferring the X-ray crystal structure of most 
proteins over alternative conformations. Then when presented 
with a novel amino acid sequence having little or no resem- 
blance to those found in the Protein Data Bank, current 
methodology would choose the contiguous segment out of all 
the known protein structures that the contact function prefers. 
If there is a known protein having a domain of the correct 
conformation (structural homology, but not necessarily any 
sequence homology), then the potential function would make 
this its prediction and be correct in doing so. If the only 
structural match in the database involved substantial insertions 

Table 111: Contact Potential Function That Favors 45 Proteins' 
Crystal Structures" 
separation class eij 

3 {all1 (-0.008) 

5-7 {all} (0.021) 
4 la111 (0.004) 

-0.074 -0.054 0.123 
0.123 -0.317 0.156 

-0.317 -0.263 -0.010 
0.156 -0.010 -0.004 

2 = IAV) 
3 = [LICMF} 

'Classification of amino acid residue contacts is by sequence sepa- 
ration and by subsets of types of residue indicated by the single-letter 
residue code. The third column gives the matrix of empirically deter- 
mined interaction parameters for contacts between residues of the var- 
ious classes. 

For example, 1 have obtained similar preliminary results using 
an alternative simplification procedure that tries to reduce the 
information theory entropy of the total clissification in all 
separation ranges at once. Otherwise, Table I11 makes some 
degree of sense: helix formation is slightly favorable, whereas 
medium-range contacts are discouraged; the main factor is to 
form hydrophobic-hydrophobic long-range contacts while 
secondarily avoiding hydrophilic-hydrophilic contacts. It is 
probably an artifact of the fitting procedure that interactions 
between large hydrophobic residues and Ala or Val are singled 
out as being particularly important. Given that we see here 
just one point in a large feasible space and that the classifi- 
cation scheme and interaction parameters of Table I11 are quite 
dependent on which proteins were included in the study and 
on the proposed starting classification, it would be unwise to 
comment further on the physical significance of the result. 
Unlike least-squares fits, the solution found for a set of ine- 
qualities can be substantially shifted by adding one new protein 
or by suggesting a different starting classification. 

At the solution shown in Table 111, only eight proteins had 
one or more inequalities that were active: 4pti, 2ebx, lcc5, 
2gn5, 4cyt, 2cdv, 1 hmq, and 2nihb. Thus, a few of the al- 
ternative conformations available to only these eight proteins 
are what determine the adjustable interaction parameters eij 
in the table. Of the 56 proteins for which alternative con- 
formations had been calculated at all, another 37 favored the 
native over all alternatives by substantial margins (>0.2). 
These correctly predicted proteins ranged in size from 1 fdx 
with 54 residues to 2cna with 237 residues. That leaves 11 
proteins where at  least one alternative conformation had a 
function value lower than that of the native: lmlt, lppt, lcrn, 
3rxn, 20v0, 2pka, lhip, 2fd1, 3c2c, lecd, and 4fxn. The ex- 
tremely small peptides melittin (lmlt) and avian pancreatic 
polypeptide (1 ppt) seem to be difficult to bring into,any general 
scheme, possibly because they are treated as isolated monomers 
in the calculations, whereas crystal packing and the tight 
tetramer of melittin may significantly affect their observed 
conformations. Porcine kallikrein (2pka) is not represented 
in  these calculations as even a whole domain for technical 
reasons explained above, so failure to fit it is actually appro- 
priate. Crambin (lcrn) is an anomalously hydrophobic small 
protein crystallized in dilute ethanol, so failure here is perhaps 
excusable. The remaining seven mispredictions are not easy 
to explain away. They are in error because the best alternative 
conformation had a better contact function value than that 
of the native, but the margins of error are not significantly 
different from the margins of success for the 37 correctly 
predicted proteins (3rxn 0.7, 20vo 0.3, 1 hip 1.7, 2fdl 1.5, 3c2c 
0.9, lecd 1.9, and 4fxn 14.1). Indeed, if the seven mispredicted 
proteins are included in the training set, another residue 
classification and interaction parameter set can be calculated, 
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and deletions, then the current methods would have to be 
improved in order to make a correct prediction. 
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ABSTRACT: Protein folding and the transfer of hydrocarbons from a dilute aqueous solution to the pure liquid 
phase are thermodynamically similar in that both processes remove nonpolar surface from water and both 
are  accompanied by anomalously large negative heat capacity changes. On the ba$s of a limited set of 
published surface areas, we previously proposed that heat capacity changes (AC,) for the transfer of 
hydrocarbons from water to the pure liquid phase and for the folding of globular proteins exhibit the same 
proportionality to the reduction in water-accessible nonpolar surface area (AAnp) [Spolar, R. S . ,  Ha, J. H., 
& Record, M. T., Jr. (1989) Proc. Natl .  Acad. Sei. U.S.A.  86,8382-83851. The consequence of this proposal 
is that the experimental AC” for protein folding can be used to obtain estimates of AA, and of the contribution 
to the stability of the foldel state from removal of a nonpolar surface from water. fn  this paper, a rigorous 
molecular surface area algorithm [Richmond, T. J. (1984) J. Mol. Biol.  178, 63-89] is applied to obtain 
self-consistent values of the water-accessible nonpolar surface areas of the native andSompletely denatured 
states of the entire set of globular proteins for which both crystal structures and ACp of folding have been 
determined and for the set of liquid and liquefiable hydrocarbons for which AC; of transfer are known. 
Both processes (hydrocarbon transfer and protein folding) exhibit the same direct proportionality between 
AC; and AAnp. We conclude that the large negative heat capacity changes observed in protein folding and 
other self-assembly processes involving proteins provide a quantitative measure of the reduction in the 
water-accessible nonpolar surface area and of the contribution of the hydrophobic effect to the stability 
of the native state and to protein assembly. 

Noncovalen t  assembly processes involving proteins, such as 
folding, oligomerization, and ligand binding, are typically 
accompanied by large reductions in water-accessible nonpolar 
surface area. Kauzmann (1959) proposed that the removal 
of nonpolar amino acid side chains from water (the 
“hydrophobic effect”) should provide a large driving force 
(AG;,,) for assembly or association processes involving pro- 
teins. To quantify the contribution of AGiyd to the observed 
standard free-energy change (AG:bs) for the assembly or as- 
sociation process, most york has focused on analyzing the free 
energy of transfer (AG,,) of amino acids or their analogues 
from water to an organic solvent (Cohn & Edsall, 1943; 
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Nozaki & Tanford, 1971; Fauchbe & Pliska, 1983) or to the 
gas phase (Wolfenden et al., 1981). Various hydrophobicity 
scales have been proposed that rank amino acids according 
to either their experimental transfer behavior [cf. Cornette et 
al. (1987)l or their observed distribution in protein crystal 
structures between the exterior and interior of the folded form 
(Janin, 1979; Rose et al., 1985a; Miller et al., 1987a). 
However, a comparison of hydrophobicity scales reveals that, 
in general, values of AG;, from different scales do not correlate 
well with each other and that even the relative ranking of 
amino acids varies from scale to scale (Rose et al., 1985b). 
Alternatively, the relationship between A c t  of amino acids 
and the total water-accessible surface has been examined 
(Chothia, 1974) as well as the relationship between A G t  and 
surface area at the functional group level (Eisenberg & Mac- 
Lachlan, 1986; Ooi et al., 1987). The use of these relationships 
to estimate values of ACiYd is complicated by the same problem 
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